Abstract

Abstract Cracking of FCC naphtha has been investigated on the model catalysts containing ZSM-5 (Si/Al2=50, 500), Zn-ZSM-5 (Si/Al2=50) and USY. The presence of ZSM-5 and USY causes a tremendous decrease in olefins of gasoline fraction, leading to an enrichment of the aromatics in liquid product. It is evidently that aromatics are generated from lower olefins. The property of lower silica-to-alumina ratio of ZSM-5 and Zn modification enhance the aromatization process for higher cracking reactivity and dehydrogenation. The result of evaluation in confined fluid bed apparatus (CFBA) with the mixture of VGO and VTB as feed further confirms the aromatics generation in cracking reaction stimulated by ZSM-5 additive over base catalysts with different hydrogen transfer activity. Based on these results, relations between scission and aromatization in FCC catalyst containing ZSM-5 zeolite could be proposed. The suggested reaction path could better explain the reasons that effectiveness of ZSM-5 additive to lighter olefins is more profound in base catalyst of low hydrogen transfer activity and why so many researchers had not observed the aromatics generation motivated by ZSM-5 additive in catalytic cracking reaction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.