Abstract

<div class="section abstract"><div class="htmlview paragraph">Magnesium alloy nanocomposite prepared with hard ceramic particles via conventional technique is a promising future material for automotive applications due to its unique characteristics like low density, high strength, castability, and good wear resistance. The present study is to enhance the tribo-mechanical properties of alumina nanoparticle (10wt %) reinforced magnesium alloy (Mg/Al) composite by incorporating 1wt%, 3wt%, and 5wt% zirconium dioxide (ZrO<sub>2</sub>) nanoparticles through stir casting method. The tensile strength, impact toughness, hardness, and wear rate of developed composites were compared with (10wt %) alumina nanoparticles reinforced magnesium alloy composite. The nanocomposite containing 3wt% ZrO<sub>2</sub> shows maximum impact strength of 22.8 J/mm<sup>2</sup>. The maximum tensile strength (88.9MPa), hardness (124.5BHN), and wear resistance (9.802mm<sup>3</sup>/m at 20N) are obtained for 5wt% ZrO<sub>2</sub> magnesium alloy nanocomposite.</div></div>

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call