Abstract
Composites with good mechanical and tribological properties are in high demand for engineering applications. Toward this aim, the Mo–12Si–8.5B alloy with 2.5–10 wt% ZrB2 ceramic was prepared. The effects of the ZrB2 content on the microstructure, mechanical properties, and tribological behavior were thoroughly investigated. The composites exhibited reduced density and enhanced hardness and strength owing to the dispersion strengthening of ZrB2 particles, thus resulting in improved wear resistance. The frictional properties are highly dependent on the ZrB2 content and counterpart materials. When coupled with GCr15 steel, it shows much slighter abrasive and adhesive wear; therefore, it presents a more preferable anti-wear performance. The wear rate of the composite with 7.5 wt% ZrB2 showed a minimum value of 2.71 × 10−7 mm3N−1m−1.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.