Abstract

The article reports the synthesis of 5%CuO/Ce1– xZrxO2 catalysts based on CeO2, ZrO2 oxides and Ce1– xZrxO2 solid solutions with х = 0.2, 0.5, and 0.8. It is found that copper oxide is present in the catalysts in a highly dispersed form. In strong interaction with supports, it forms active oxygen, which participates in CO chemisorption and low-temperature oxidation of CO in the presence of hydrogen. In selective CO oxidation, the highest conversion (γmах = 100%) was obtained at temperatures of 120–160°С in the presence of 5%CuO/CeO2. In the modification of CeO2 by zirconium cations, the conversion on 5%Ce0.5Zr0.5O2 decreases to 92% at 160°С because oxygen binding strengthens on copper-containing sites. On the 5%CuO/ZrO2 sample, the maximum conversion is 67% at 180°С. The modification of ZrO2 by cerium cations leads to an increase in the conversion to 87% at 160°С on the 5%CuO/Ce0.2Zr0.8O2 sample as a result of increasing the amount of oxygen vacancies in the support. Taking into account the properties of CO complexes formed on copper-containing oxidation and adsorption sites, and the interaction of these complexes with adsorbed oxygen, their participation in the reaction of low-temperature CO oxidation by oxygen in excess of hydrogen on 5%CuO/CeO2 and 5%CuO/ZrO2 catalysts is considered.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.