Abstract

The hot compression experiment of homogenized Al-5.2Mg-0.6Mn-0.29Zn-0.16Er-0.12Zr alloy was carried out by the Gleeble-3500 thermal simulation testing system. The deformation behavior in temperatures of 350~500 ℃ and deformation rates of 0.01~10 s-1 was studied. The relationship between stress and strain rate and deformation temperature was analyzed. The constitutive equation of alloy high-temperature deformation was constructed by the Zener-Hollomon method, and the hot working diagram with the true strain of 0.2 and 0.5 was constructed according to the dynamic material model. The research results show that flow stress has a positive correlation with strain rate and a negative correlation with temperature. The steady flow stress during deformation can be described by a hyperbolic sinusoidal constitutive equation. Adding Er and Zr into Al-Mg alloy can not only refine grains and strengthen precipitation but also form a core-shell Al3(Er, Zr) phase. In the deformation process, Al3(Er, Zr) precipitates can pin dislocations and inhibit dynamic recrystallization (DRX). Dynamic recovery (DRV) is dominant during hot deformation. The mechanism of dynamic recovery is dislocation motion. At high temperatures, Al3(Er, Zr) can also inhibit grain coarsening. The average hot deformation activation energy of the alloy is 203.7 kJ/mol. This high activation energy can be due to the pinning effect of Er and Zr precipitates. The processing map of the alloy was analyzed and combined with the observation of microstructure, the hot deformation instability zone of the alloy was determined, and the suitable process parameters for hot deformation were obtained, which were 450~480 °C, and the strain rate is 0.01~0.09 s-1.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.