Abstract

The effects of Zr addition on mechanical property in the aged Al–Mg–Si alloy exposed to thermal-resistant treatment (180–250 °C) have been studied by using both Brinell Hardness tests and tensile tests. The softening process at 180 °C and 230 °C has been investigated by transmission electron microscope (TEM). The Arrhenius Model is introduced to simulate the strength evolution in the thermal-resistant treatment. The results show that tensile strength and thermal-resistant property are improved by addition of Zr, and both the Brinell Hardness and Tensile Strength could maintain no less than 90% of their initial values when the alloy is exposed to heat treatment at 180 °C for 400 h and 230 °C for 2 h. The presence of rod-shaped phases and coarsening particles results in decreasing the hardness of the sample. The relationship between thermal-resistant life and temperature is derived by the Arrhenius Model. When the Al–Mg–Si–Zr alloy is heated at 130 °C, the duration described in the Arrhenius plot could reach to 40 years.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.