Abstract

Nano Ru-based catalysts, including monometallic Ru and Ru-Zn nanoparticles, were synthesized via a precipitation method. The prepared catalysts were evaluated on partial hydrogenation of benzene towards cyclohexene generation, during which the effect of reaction modifiers, i.e., ZnSO4, MnSO4, and FeSO4, was investigated. The fresh and the spent catalysts were thoroughly characterized by XRD, TEM, SEM, XPS, XRF, and DFT studies. It was found that Zn2+ or Fe2+ could be adsorbed on the surface of a monometallic Ru catalyst, where a stabilized complex could be formed between the cations and the cyclohexene. This led to an enhancement of catalytic selectivity towards cyclohexene. Furthermore, electron transfer was observed from Zn2+ or Fe2+ to Ru, hindering the catalytic activity towards benzene hydrogenation. In comparison, very few Mn2+ cations were adsorbed on the Ru surface, for which no cyclohexene could be detected. On the other hand, for Ru-Zn catalyst, Zn existed as rodlike ZnO. The added ZnSO4 and FeSO4 could react with ZnO to generate (Zn(OH)2)5(ZnSO4)(H2O) and basic Fe sulfate, respectively. This further benefited the adsorption of Zn2+ or Fe2+, leading to the decrease of catalytic activity towards benzene conversion and the increase of selectivity towards cyclohexene synthesis. When 0.57 mol·L−1 of ZnSO4 was applied, the highest cyclohexene yield of 62.6% was achieved. When MnSO4 was used as a reaction modifier, H2SO4 could be generated in the slurry via its hydrolysis, which reacted with ZnO to form ZnSO4. The selectivity towards cyclohexene formation was then improved by the adsorbed Zn2+.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.