Abstract

Enhancing the thermoelectric performance in engineered graphene nanoribbons is used to produce thermoelectric nanodevices, which are important in many applications. By using a chemical doping method, armchair graphene nanoribbons (AGNRs) can have thermoelectric properties that are tunable. We predicted that changing the number and geometrical pattern of zinc oxide (ZnO) dimers in an AGNR can engineer thermoelectric properties, so we used density functional-based tight binding (DFTB) combined with the non-equilibrium Green's function (NEGF) to investigate the geometric, electronic, and thermoelectric properties of the AGNR with and without various dopants of ZnO dimers. With three forms of ZnO dimers, ortho, meta, and para dimers, different concentration ratios of Zn and O atoms are used. Our results indicate that the electronic features of AGNR are influenced not only by the concentrations of ZnO dimers but also by the geometrical pattern of ZnO dimers in the AGNR. These results are helpful in better understanding the effect of chemical doping on the transport properties of AGNRs and in motivating nanodevices to improve their thermoelectric performance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call