Abstract

Drought is abiotic stress that directly influences crop growth performance, including wheat. In this study, the nanotechnology method was applied to decrease the impact of drought on wheat growth. For this purpose, three types of drought resistance nanoparticles (Silicon dioxide (SiO2), Zinc oxide (ZnO), and Copper (Cu)) were used with two wheat varieties (kalar1 and kalar2) in the Garmian district. The results showed that nanoparticles increased specific leaf area, chlorophyll, soluble carbohydrate, catalase enzyme activity, phosphor, and potassium under drought stress compared with the control. SiO2 and ZnO nanoparticles had better impacts on some morphological and biochemical parameters than Cu. Different drought-resistance nanoparticles could be used to cope with drought impact in the Garmain district and improve wheat growth.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.