Abstract

PurposeThe influence of Zn concentration on microstructure and corrosion performance of the Mg–xZn alloys microalloyed with Ca and Ce was investigated through optic microscopy, scanning electron microscopy, hydrogen evolution, dynamic polarization and electrochemical impedance spectroscopy experiments.Design/methodology/approachIn this paper, Mg–xZn alloys (x = 0.5∼2.0 Wt.%) microalloyed with Ca and Ce (0.2 Wt.% each) were prepared.FindingsAs the increase of Zn concentration, the number of second phase particles (Mg-Zn-Ca, Mg-Zn-Ce and Mg-Ce phases) increased, and when the Zn concentration increased to 2.0 Wt.%, the new second phase Mg-Zn phase was precipitated.Originality/valueThe influence of Zn concentration on corrosion mechanism of Mg-xZn alloys microalloyed with Ca and Ce was revealed. Increasing of the Zn concentration resulted in the intensification of galvanic corrosion. When Zn concentration was 0.5 Wt.%, the alloy showed the lowest corrosion rate (0.61 mm y-1), which was about 1/2 of that of Mg-2.0Zn-0.2Ca-0.2Ce alloy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call