Abstract

In this study, the effect of Zn (Zn = 1 wt.%, 3 wt.%, and 7 wt.%) additions to Sn-4Ag solder reacting with Ag substrates was investigated under solid-state and liquid-state conditions. The composition and microstructure of the intermetallic compounds (IMCs) significantly changed due to the introduction of different Zn contents. In the case of Sn-4Ag solder with 1 wt.% Zn, a continuous Ag-Sn IMC layer formed on the Ag substrates; discontinuous Ag-Zn layers and Sn-rich regions formed on the Ag substrates under liquid-state conditions when the Sn-4Ag solders contained 3 wt.% and 7 wt.% Zn. If 3 wt.% Zn was added to Sn-4Ag solder, the Ag-Sn IMC would be transformed into a Ag-Zn IMC with increasing aging time. Rough interfaces between the IMCs and the Ag substrates were observed in Sn-4Ag-7Zn/Ag joints after reflowing at 260� C for 15 min; however, the interfaces between the IMCs and the Ag substrates became smooth for Sn-4Ag-1Zn/Ag and Sn-4Ag-3Zn/Ag joints. The nonparabolic growth mechanism of IMCs was probed in the Sn-4Ag-3Zn/Ag joints during liquid-state reaction, and can be attributed to the detachment of IMCs. On the other hand, the effect of gravity was also taken into account to explain the formation of IMCs at the three different interfaces (bottom, top, and vertical) during the reflow procedure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call