Abstract
To estimate the effect of displacement damage by neutron irradiation of an oxide film of zirconium alloy , a Zircaloy-2 sample was corroded in high temperature and high pressure water at 561 K for 1000 h to form an oxide film. It was then irradiated with 3-MeV Zr 2+ ions up to 1.3 × 10 20 ions/m 2 at 573 K. Subsequently, the crystalline properties of the oxide film and nature of secondary phase particles (SPPs) in the oxide film were investigated by X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and secondary-ion mass spectrometry (SIMS). From the results off the XRD measurement, monoclinic-ZrO 2 was found to be predominant at operation temperature of a light-water reactor, and slightly tetragonal ZrO 2 was also confirmed. The diffraction peaks of the monoclinic ZrO 2 were slightly clearer in the case of the irradiated sample than in the case of the unirradiated sample. Specifically, ratio of tetragonal ZrO 2 (011) diffraction to monoclinic ZrO 2 (-111) diffraction was increased by irradaiation. In addition, half width of monoclinic ZrO 2 (-111) diffraction was decreased with irradiation dose. This result suggests that the crystallinity of the oxide film was macroscopically improved by the ion irradiation . The diffracted wave corresponding to the (011) plane of the tetragonal ZrO 2 was also revealed after irradiation. It may suggest that tetragonal ZrO 2 is stabilized by accumulation of irradiation defects. However, the crystal structure difference between irradiated and unirradiated is small. Detailed TEM observation of the oxide film confirmed transition from crystalline to amorphous phase in the SPPs near the metal-oxide interface. Furthermore, the diffraction pattern taken from the SPPs near the surface of the oxide film could not be distinguished from that of ZrO 2 . That is, it was concluded that those near the surface of the oxide film were assimilated into ZrO 2 . Their iron concentration was less than that near the metal/oxide interface. Following the TEM observation, SEM observation was performed in the vicinity of the area where the TEM image was obtained. According to the SEM observation, the number of SPPs in the ion-irradiated oxide film tended to be lower than that in the unirradiated oxide film. This tendency was more significant near the surface than near the metal-oxide interface. It is therefore concluded that ZrO 2 in the oxide film is not easily irradiated; however, the SPPs are affected by the irradiation, and dissolution of the alloying elements from the SPPs to the matrix of the oxide film is promoted by substitution irradiation damage.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.