Abstract

Soil contamination by heavy metals is one of the major abiotic stresses that cause retarded plant growth and low productivity. Among the heavy metals, excessive accumulations of zinc (Zn) cause toxicity to plants. The toxicity caused by Zn could be managed by application of Zn-tolerant plant growth-promoting (PGP) bacteria. In this study, five Zn-tolerant bacteria (100-400 mg-1 Zn resistant) were selected and identified as Lysinibacillus spp. based on 16S rRNA gene sequencing. The PGP properties of the Lysinibacillus spp. showed the production of indole acetic acid (60.0-84.0 μg/ml) and siderophore, as well as solubilization of potassium. Furthermore, the isolates were evaluated under greenhouse condition with 2 g kg-1 Zn stress and without Zn stress along with control on Zea mays. The results showed that Lysinibacillus spp. coated seeds enhanced plant growth attributes and biomass yield in both conditions compared with control plants. The enhancement of root growth ranged from 49.2 to 148.6% and shoot length from 83.3 to 111.7% under Zn-stressed soils. Also, the inoculated seedlings substantially enhanced chlorophyll a and b, proline, total phenol, and ascorbic acid. The uptake of Zn by maize root ranged from 31.5 to 210.0% compared with control plants. Therefore, this study suggested that the tested Zn-tolerant Lysinibacillus spp. may be used for cultivation of Z. mays in Zn-contaminated agricultural lands.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.