Abstract
The effects of dietary Zinc (Zn) supplementation on the gene expression of appetite regulatory peptides were investigated in Salmonella-infected broiler chickens. Broiler chickens (Arbor Acres, 1day old) were allocated randomly into 24 pens of 10 birds. The chickens from 12 pens were fed with basal diet and the other with basal diet supplemented with Zn (ZnSO4·H2O, 120mg/kg). At 5days of age, the chickens were divided into 4 treatments with 6 pens: basal diet; basal diet and Salmonella challenge; Zn-supplemented diet; Zn-supplemented diet and Salmonella challenge. At 42days of age, the hypothalamus from 6 chickens per treatment (1 chicken per pen) was individually collected for gene expression determination. Results showed that dietary supplementation of Zn reduced the gene expression of hypothalamic ghrelin and tumor necrosis factor alpha (TNF-α) (P < 0.05). Salmonella infection upregulated the messenger RNA (mRNA) levels of hypothalamic neuropeptide Y (NPY) and TNF-α. Zn supplementation and Salmonella inoculation were significantly correlated with the mRNA levels of toll-like receptor 2-1 (P < 0.05). However, neither dietary Zn supplementation nor Salmonella inoculation had significant effect on hypothalamic agouti-related protein, cocaine- and amphetamine-regulated transcript, and pro-opiomelanocortin. This study shows that dietary Zn supplementation promoted orexigenic appetite regulatory peptides and reduced the expression of the inflammatory cytokine TNF-α in the hypothalamus of Salmonella-challenged broilers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.