Abstract

Continuous fiber development is needed for high performance and high temperature composites. Various methods have been used to make ceramic fibers. In this research, composite fibers (yttrium aluminum garnet (YAG)/Al 2O 3) were prepared by a sol–gel method using aqueous solution. They were synthesized from aluminum salt, aluminum metal, yttrium oxide and water used as solvent. Transparent gel fibers were obtained by immersing a thin wire into the viscous sol, then pulling it out by hand. The obtained fibers contained very fine grains with diameter ranging from 10 to 80 μm after heat treatment. When yttria content was increased, the crystallization of YAG shifted to a lower temperature, whereas the transformation temperature to α-Al 2O 3 shifted to a higher temperature. Nevertheless, the fibers with different amounts of yttria contained alumina and YAG after heat treatment at 1400 °C. The composite fibers had vermicular structure and were denser than alumina fibers. The yttria percent concerning the limits of this study (≤10 wt%) effected on fiber diameter. As the yttria content was increased, the fiber diameter increased, whereas grain size and densification of the composite fibers decreased.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.