Abstract

This study addressed the effects of Yb3+ on voltage-gated sodium currents in rat hippocampal neurons using the whole-cell patch-clamp technique. Voltage-clamp recordings in single neurons were filtered and stored in a computer. Yb3+ increased the amplitude of sodium currents in a concentration-dependent and voltage-dependent manner. The 50 % enhancement concentration of Yb3+ on sodium currents was about 8.97 μmol/L, which was different from the inhibitory effects of Yb3+ on potassium current. The analysis on the activation and inactivation kinetics of Na+ current showed that 100 μmol/L Yb3+ did not change the process of activation and inactivation. In addition, the times reaching the peak of current (t) and inactivated time constant (τ) were voltage dependent. 100 μmol/L Yb3+ significantly prolonged the time to peak at −70 and −80 mV. The effect disappeared at the positive direction of −70 mV. Furthermore, Yb3+ decreased τ values to more positive values than −80 mV. In total, Yb3+ did not change the process of activation, but impelled inactivated process. Yb3+ mainly increased the Na+ current through changing its conductance. It might be one of the mechanisms that Yb3+ affected the hippocampal neurons.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.