Abstract

Background: Synthetic fertilizers and pesticides are widely used, with detrimental repercussions for soil microbial biodiversity and environmental contamination. The use of microorganisms as bio-fertilizers has been recommended as an alternative agricultural strategy. Due to their potential to safely boost plant development, yeasts can be used to make high-quality bio-fertilizers and biopesticides in a variety of ways. As a result, substantial yeast research could be promising and could provide an environmentally acceptable solution to the increasing agricultural output that would be necessary as the world’s population grows. Methods: The study was conducted to investigate the effect of different yeast concentrations on lettuce crop production and quality. The experiment consisted of four treatments (1%, 3%, 5% and 7% w/v yeast). The measurements included chlorophyll content, plant length (cm) and plant-wet weight for shoot and root (g). The design of the experiment was a complete factorial design with five replicates for each treatment. Three doses of each yeast solution, i.e. 1%-7% w/v, were added to soil after 7, 25 and 40 days from cultivation. The plants were harvested after 52 days. Result: In the current study, it was found that the highest chlorophyll content with a value of 44.6 was obtained at 3% w/v of yeast concentration followed by 1% w/v (39.7), 5% w/v (44.3) and 7% w/v (41), respectively. The average maximum length of plants after 52 days was 26.6 cm at 3% w/v and 26.13 cm at 5% (w/v) of yeast concentrations. The other treatments gave lower values, i.e. 24.4 cm, 22.2 cm and 19.1 cm for 1% w/v, 7% w/v and control, respectively,. The values have the same trend during the experiment time at the three stages (7, 25 and 40) days from cultivation. The optimum plant wet weight for shoot and root with 3% w/v yeast concentration were 212.2 and 33.9 g, respectively. At 5% w/v of yeast concentration, the wet weight for shoot and root were 200.1 g and 30.7 g followed by 7% w/v (196.2 g and 25.6 g) and 1% w/v (171.2 g and 26.4 g).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call