Abstract
Offshore Horizontal Axis Wind Turbines (HAWT) are used globally as a source of clean and renewable energy. Turbine efficiency can be improved by optimizing the geometry of the turbine blades. Turbines are generally designed in a way that its orientation is adjustable to ensure the wind direction is aligned with the axis of the turbine shaft. The deflection angle from this position is defined as yaw angle of the turbine. Understanding the effects of the yaw angle on the wind turbine performance is important for the turbine safety and performance analysis. In this study, performance of a yawed HAWT is studied by computational fluid dynamics. The wind flow around the turbine is simulated by solving the Reynolds-Averaged Navier-Stokes equations using software ANSYS Fluent. The principal aim of this study is to quantify the yaw angle on the efficiency of the turbine and to check the accuracy of existing empirical formula. A three-bladed 100-m diameter prototype HAWT was analysed through comprehensive Computational Fluid Dynamics (CFD) simulations. The turbine efficiency reaches its maximum value of 33.9% at 0° yaw angle and decreases with the increase of yaw angle. It was proved that the cosine law can estimate the turbine efficiency with a yaw angle with an error less 10% when the yaw angle is between –30° and 30°. The relative error of the cosine law increase at larger yaw angles because of the power is reduced significantly.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.