Abstract

Calcium-incorporated titanium (Ti) recently reported a large degree of effectiveness in many in vitro and in vivo studies. The implants with the deeper thread provide the higher surface area and will have an advantage in soft bone. We used the Ti implants with deep threads and investigated osseintegration of the implants with resorbable blast media (RBM) surfaces produced by grit-blasting or XPEED surfaces by coating of the nanostrucutred calcium.The Ti implants with deep threads had a thread diameter of 4.0 mm, a length of 5.0 mm and a thread depth of 1.0 mm. The Ti implants with calcium-incorporated surfaces (XPEED surfaces) were hydrothermally prepared from the Ti implants with RBM surfaces in alkaline calcium containing solution. The surface characteristics were evaluated by using scanning electron microscope (SEM) and surface roughness measuring system. Thirty-implants with RBM surfaces and thirty-implants with XPEED surfaces were randomly placed in the proximal tibiae and in the femoral condyles of ten New Zealand White rabbits. The osseointegration was evaluated by removal torque test in the proximal tibiae and histomorphometric analysis in the femoral condyles. The Ti implants with XPEED surfaces showed a similar surface morphology and surface roughness to those of the Ti implants with RBM surfaces. The mean removal torque of the Ti implants with XPEED surfaces was higher than the Ti implants with RBM surfaces (p < 0.05). The percentage of bone-to-implant contact (BIC %) were increased for the Ti implants with XPEED surfaces compared with the Ti implants with RBM surfaces (p < 0.05).The Ti implants with XPEED surfaces significantly enhanced the removal torque and the BIC %. The Ti implants with XPEED surfaces may be shorten healing time of bone by improving osseointegration of Ti implants with deep threads.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call