Abstract

Background:Platinum-based drugs, including cisplatin and carboplatin, are the most active and extensively used agents for treating lung cancer. Genetic polymorphisms of DNA repair gene XPD and tumor suppressor gene TP53 are connected with alterations in enzyme activity. They may help explain interindividual differences in toxicity outcomes after platinum-based chemotherapy for lung cancer. Therefore, this study aimed to investigate XPD Lys751Gln and TP53 Arg72Pro polymorphisms on the risk of platinum-based chemotherapy-induced toxicity in lung cancer patients in the Bangladeshi population. Patients and Methods:Study subjects comprised of 180 platinum-based chemotherapy treated histologically confirmed lung cancer patients. Genetic polymorphisms of XPD were ascertained by Polymerase Chain Reaction-based Restriction Fragment Length Polymorphism (PCR-RFLP), while TP53 genotypes were analyzed using the multiplex PCR-based method. Toxicity was assessed based on the Common Terminology Criteria for Adverse Events (CTCAE v5.0). Results:From the results, there was no significant association observed between grade 1-2 or grade 3-4 platinum-based chemotherapy induced toxicities like anemia and XPD codon 751 (Lys/Gln: OR=1.40, 95% CI=0.75-2.64, p>0.05; Gln/Gln: OR=1.07, 95% CI=0.45-2.52, p>0.05 and Lys/Gln+Gln/Gln: OR=1.31, 95% CI=0.73-2.38, p>0.05) or TP53 codon 72 genetic polymorphisms (Arg/Pro: OR=0.64, 95% CI=0.34-1.17, p>0.05; Pro/Pro: OR=0.46, 95% CI=0.15-1.42, p>0.05 and Arg/Pro+Pro/Pro: OR=0.62, 95% CI=0.34-1.15, p>0.05). Similar results were found between neutropenia, leukopenia, thrombocytopenia and gastrointestinal toxicities and XPD Lys751Gln or TP53 Arg72Pro genetic polymorphisms. Conclusion:These findings indicated that no significant association was found between either XPD codon 751 or TP53 codon 72 genetic polymorphisms and platinum-based chemotherapy-related toxicities in Bangladeshi lung cancer patients.

Highlights

  • Lung cancer has become one of the cancers with high morbidity and mortality, and its global incidence is rising year by year

  • Results:From the results, there was no significant association observed between grade 1-2 or grade 3-4 platinum-based chemotherapy induced toxicities like anemia and XPD codon 751 (Lys/Gln: odds ratio (OR)=1.40, 95% confidence intervals (CIs)=0.75-2.64, p>0.05; Gln/Gln: OR=1.07, 95% CI=0.45-2.52, p>0.05 and Lys/Gln+Gln/Gln: OR=1.31, 95% CI=0.732.38, p>0.05) or TP53 codon 72 genetic polymorphisms (Arg/Pro: OR=0.64, 95% CI=0.34-1.17, p>0.05; Pro/Pro: OR=0.46, 95% CI=0.15-1.42, p>0.05 and arginine/proline heterozygous (Arg/Pro)+Pro/Pro: OR=0.62, 95% CI=0.34-1.15, p>0.05)

  • These findings indicated that no significant association was found between either XPD codon 751 or TP53 codon 72 genetic polymorphisms and platinum-based chemotherapyrelated toxicities in Bangladeshi lung cancer patients

Read more

Summary

Introduction

Lung cancer has become one of the cancers with high morbidity and mortality, and its global incidence is rising year by year. Genetic polymorphisms of DNA repair gene XPD and tumor suppressor gene TP53 are connected with alterations in enzyme activity. They may help explain interindividual differences in toxicity outcomes after platinum-based chemotherapy for lung cancer. This study aimed to investigate XPD Lys751Gln and TP53 Arg72Pro polymorphisms on the risk of platinum-based chemotherapy-induced toxicity in lung cancer patients in the Bangladeshi population. Conclusion: These findings indicated that no significant association was found between either XPD codon 751 or TP53 codon 72 genetic polymorphisms and platinum-based chemotherapyrelated toxicities in Bangladeshi lung cancer patients

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call