Abstract

The aim of this study was to examine the effects of xanthan gum on the lipid digestibility, rheological properties, and β-carotene bioaccessibility of rice starch-based filled hydrogels. β-Carotene was solubilized within lipid droplets of emulsion that were then entrapped within rice starch hydrogels fabricated with different concentrations of xanthan gum. At a low concentration of xanthan gum (<0.5wt%), the viscous characteristics of the filled starch hydrogels increased. Furthermore, these hydrogels had a slower rate of lipid digestion than the β-carotene-loaded emulsion. As the concentration of xanthan gum was increased (to 1.0wt% and 2.0wt%), the filled starch hydrogels became more elastic gel-like than those without xanthan gum, and also had the fastest rate and highest final extent of lipid digestion. The addition of xanthan gum to the filled starch hydrogel lowered the bioaccessibility of β-carotene to varying degrees, depending on the xanthan gum concentration. The results obtained from this study can be useful in designing gel-like food products fortified with lipophilic nutraceuticals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.