Abstract

The author characterizes and evaluates the effect of simultaneous multiple partial-band noise or tone jammers and other user interference on a single communication link employing frequency-hopped spread-spectrum (FH/SS) signaling, M-ary frequency-shift keying (FSK) modulation with noncoherent demodulation, and Reed-Solomon coding. For the symbol error probability of these systems, the author derives exact expressions in the absence of multiple-access interference and tight upper bounds in the presence of other-user interference. Although the analytical methods are valid for any number of multiple jammers, the numerical study is restricted to the cases of two and three-partial-band noise and tone jammers. For fixed values of the spectral densities of noise jammers, or the energies per symbol of tone jammers, the worst-case fraction of the band that each jammer should use in order to maximize the error probability of the FH/SS or FH/SSMA system is evaluated. For the range of the signal-to-jammer power ratios examined, multiple-noise or multiple-tone jammers appear to have no advantage over single-tone jammers of equivalent spectral density or energy per symbol, but achieve approximately the same worst-case performance by jamming smaller fractions of the band. >

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.