Abstract

The influence of working pressure on microstructure and mechanical properties of magnetron sputtered ZrN coatings were systemically investigated. The results reveal that a decreased working pressure results in preferred orientation evolution from (111) to (200) and cross-sectional morphologies transition from columnar structure to equiaxed grains. These microstructural changes are considered responsible for an increase in hardness and modulus with decreasing working pressure. Chip spallation and plastic deformation failure modes are observed during scratch testing, and the increased critical loads are attributed to higher hardness and elastic modulus, as well as moderate compressive stress at lower working pressure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call