Abstract
The pulsing heat pipe (PHP) is an technology that is increasingly capable of applying many manufacturing areas, but a thorough knowledge of its thermo-hydrodynamic There's far from enough system. This research explored the features of oscillation and the heat transfer efficiency of a closed-loop PHP using an internal and external diameter copper tube with 2.0 and 3.0 mm respectively. For all experimentation, filling ratio (FR) was 40%, five turns and different heat inputs of 20 to 80 W was supplied to PHP. The position of the PHP was vertical bottom heat type. 52 mm, 170 mm,60 mm was retained for the duration of the evaporator, adiabatic and condenser section. Water, Ethanol are chosen as working liquids. To understand, thermal resistance features and median evaporator pressures for multiple operating liquids at distinct heat inputs. An significant consideration for the results of PHPs is the research on PHP stated operating fluid. The result demonstrates that, with the rise of the heating output from 20 to 80 W, where as steadily increases above 80W, the thermal resistance reduces faster. By comparing Water , Ethanol working fluids, Ethanol provides the highest heat performance . The simulation is performed in Mat lab and the results have been contrasted
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Engineering and Advanced Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.