Abstract

NAND flash memory which is mature technology has great advantage in high density and great storage capacity per chip because cells are connected in series between a bit-line and a source-line. Therefore, NAND flash cell can be used as a synaptic device which is very useful for a high-density synaptic array. In this paper, the effect of the word-line bias on the linearity of multi-level conductance steps of the NAND flash cell is investigated. A 3-layer perceptron network (784×200×10) is trained by a suitable weight update method for NAND flash memory using MNIST data set. The linearity of multi-level conductance steps is improved as the word line bias increases from Vth -0.5 to Vth +1 at a fixed bit-line bias of 0.2 V. As a result, the learning accuracy is improved as the word-line bias increases from Vth -0.5 to Vth+1.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.