Abstract

Neuropathic pain (NP) is a common clinical chronic pain with very complex mechanisms. This study explored the function of activated Wnt signaling pathway in NP. A rat model of chronic constriction injury (CCI) was established. Different doses of IWP-2, a Wnt signal inhibitor, were intrathecally injected to observe the behavior indicators at different time-points, including the pain induced by mechanical stimulation and thermal stimulation. The mRNA and protein levels of Wnt-3a, Frizzled 4 and β-catenin in lumbar (L) 4–6 dorsal root ganglion (DRG) of rats in each group, as well as synaptic plasticity-related molecules in DRG region of rats were detected by RT-PCR and western blotting, respectively. Compared with Sham group and Naive group, paw withdrawal thermal latency and paw withdrawal mechanical threshold were significantly decreased after CCI, while synaptic plasticity was increased (P<0.05). Besides, activation of Wnt/β-catenin signaling pathway was observed in rats with CCI. We found that intrathecal injection of IWP-2 effectively relieved the pain behavior and reduced the synaptic plasticity in rats with neuropathic pain after CCI, suggesting that the inactivated Wnt/β-catenin signaling pathway might be the major mechanism responsible for this effect. Our data demonstrated that intrathecal injection of IWP-2 ameliorated neuropathic pain in CCI rats by inhibiting the Wnt/β-catenin pathway.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call