Abstract

The main objective of this work is to investigate the effect of windage heating on the micro high-speed rotor-stator cavity. The influences of centrifugal force and spacing on the windage heating are analyzed with and without the change of gap ratio respectively. The results demonstrate that there is no difference in the flow structure between micro and large-scale rotor-stator cavities at the same rotational Reynolds number and gap ratio. However, the windage heating induced by the larger centrifugal force and smaller spacing brings the different heat transfer laws for the micro rotor-stator cavity. The larger centrifugal force weakens the local heat transfer near the rotor periphery. Such influence can be strengthened at higher rotational Reynolds numbers and lower rotor excess temperatures. Besides, the smaller spacing further enhances the windage heating and reduces the average heat transfer especially under the condition of lower gap ratio. The findings of this work contribute to the design of rotor-stator cavity utilized in the micro rotating machinery.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.