Abstract
During the past few decades, a number of conical tanks have collapsed in various locations around the globe. Previous studies attributed the reason of collapse to inadequate thickness of the conical vessel especially at the bottom part. Most of the previous studies focused on studying the stability of conical tanks under the effect of only hydrostatic pressure. The current study focuses on studying the combined effect of wind loading and hydrostatic pressure on the stability of conical tanks. The study is conducted numerically, using a three-dimensional finite element model that is developed in-house. The critical imperfection shapes leading to minimum buckling capacity of conical shells under wind load alone, and under the combined effect of wind load and hydrostatic pressure, are determined. The study shows that a non-axisymmetric imperfection shape leads to minimum buckling capacity of empty conical tanks subjected to wind loads, while an axisymmetric distribution is noticed in the case of conical tanks under the combined effect of wind loads and hydrostatic pressure. In addition, the current study assesses the adequacy of an existing design procedure, which accounts for hydrostatic pressure, when the combination of hydrostatic pressure and wind load is considered.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.