Abstract

The aim of the present study was to use an in vitro enamel demineralization model (1) to confirm that whole saliva pretreatment conferred acid resistance to dental enamel and (2) to determine whether this phenomenon was attributable to specific salivary proteins, minerals, lipids, or some combination of these. Crowns of human teeth, each with one exposed window, were prepared in groups of ten. They were each pretreated by immersion individually in 4 ml of either (1) clarified whole saliva for 18, 72, or 168 h, (2) dialyzed saliva (3500 MWCO membrane), (3) the "flow-through" fraction from a DEAE separation of whole saliva (neutral and basic proteins), (4) the "eluted" fraction of a DEAE separation of whole saliva (anionic proteins), or (5) a combination of salivary lipids and the DEAE "flow-through" fraction of whole saliva (neutral and basic proteins). Control groups were group 6 with no pretreatment, group 7 pretreated for 168 h in a borate buffer (5 mmol/l), and group 8 pretreated in a mineral solution containing calcium (0.7 mmol/l) and phosphate (2.6 mmol/l). The crowns were then demineralized for 7 d in vitro (0.1 mol/l acetate, 1 mmol/l Ca and phosphate, pH 5.0) to produce artificial caries-like lesions. Lesions were assessed by cross-sectional microhardness profiles, and mineral loss (delta Z, micron x vol% mineral) calculated. Mineral loss (delta Z) values decreased linearly with the square root of time of pretreatment by whole saliva, confirming a time-dependent protective effect of salivary pellicle against demineralization of enamel.(ABSTRACT TRUNCATED AT 250 WORDS)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.