Abstract
Studies have reported that whole body vibration (WBV) played a vital role in bone remodeling. Circulating serotonin is also involved in negative regulating bone mass in rodents and humans. However, both WBV and inhibition of serotonin biosynthesis may suppress receptor activator of nuclear factor-kappaB ligand (RANKL)-induced osteoclastogenesis in vitro. The purpose of the current study was to investigate the effect of WBV therapy on the levels of serum serotonin in ovariectomized rats. Thirty-six-month-old female Sprague Dawley rats weighing 276.15±37.75 g were ovariectomized to induce osteoporosis, and another ten rats underwent sham operation to establish sham control (SHAM) group. After 3 months, ovariectomized rats were divided into three subgroups and then separately treated with WBV, Alendronate (ALN) and normal saline (OVX), SHAM group was given normal saline. After 6 weeks of treatment, rats were sacrificed. Serum serotonin, RANKL, bone turnover markers, and bone mineral density (BMD), bone strength were evaluated. The serum serotonin level was significantly lower in WBV group than OVX and ALN groups (P<0.05 and P<0.001). RANKL levels significantly decreased in WBV and ALN groups compared to OVX group (P<0.001 for both). BMD and biomechanical parameters of femur significantly increased (P<0.05 for both) and bone turnover levels decreased (P<0.001 for both) in WBV group compared to OVX group. These data indicated that WBV enhanced the bone strength and BMD in ovariectomized rats most likely by reducing the levels of circulating serotonin.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.