Abstract

This study aimed to evaluate the influence of the scanning speed of whole-body scans on the detectability of positive vertebral bone images in bone scintigraphy. We used SIM2 bone phantom to obtain planar images equivalent to scanning speeds of 15, 17, and 20 cm/min. Receiver operating characteristic (ROC) analysis to evaluate lesion detectability and average count (Ct)/pixel, contrast ratio, and contrast-to-noise ratio (CNR) of the normal vertebral body and the simulated tumor site were measured. The average area under the ROC curves (AUC) was 0.936, 0.929, and 0.915 at speeds of 15, 17, and 20 cm/min, respectively. The average AUC at 20 cm/min was significantly lower than that at 15 cm/min (p<0.05) . However, no other significant differences were found (p=0.448, 0.139). The average Ct/pixel and CNR decreased at 15, 17, and 20 cm/min. The contrast ratio did not change. The results showed that increasing the scan speed from 15 cm/min to 17 cm/min had no effect on the detection of vertebral lesions. Thus, it is possible to reduce the scan time, albeit slightly.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.