Abstract

To evaluate the effects of apatite precipitation on the biocompatibility and hard tissue induction properties of white mineral trioxide aggregate (WMTA) in a dental pulp model. Pulp exposures were created on the axial walls of 32 sound canine teeth of eight dogs. Four additional sound teeth served as controls. The pulps were capped either with WMTA or apatite derivatives [biomimetic carbonated apatite (BCAp)] in the interaction of WMTA with a synthetic tissue fluid and restored with zinc oxide-eugenol cement. After 7 and 70 days, the animals were killed, and the histological specimens taken from the teeth were stained with haematoxylin and eosin for histomorphological evaluation. The Brown and Brenn technique was employed to stain bacteria. The data were subjected to nonparametric Kruskall-Wallis analysis and Mann-Whitney U_tests. Biomimetic carbonated apatite did not induce hard tissue bridge formation. WMTA performed significantly better than BCAp in this respect at both periods (P < 0.05). BCAp was associated with a significantly greater inflammatory response as compared with WMTA after 7 days (P < 0.05). Both materials were associated with similar reactions after 70 days (P >0.05). White mineral trioxide aggregate induced hard tissue formation via a mechanism other than that postulated via apatite formation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.