Abstract

The impact of controlling the aspect ratio variation on glass substrate for a p-i-n a-Si:H solar cell was investigated and reported. Compared to a flat glass substrate (Corning Eagle XG), we demonstrate an increase of haze ratio from 1% to 79.1%, and an increment in the aspect ratio from 0.1 to 1.16, which is an increase to a high slope angle, using wet chemical etching. Optical transmittance measurements show a major improvement of from 92% to 96% for a wavelength of between 300 and 1100 nm, compared to the reference flat glass. A p-i-n a-Si:H solar cell was simulated using Advanced Semiconductor Analysis simulation based on these haze ratio and aspect ratio results, and yielded an increase in short-circuit current density (Jsc) from 15.38 to 18.74 mA/cm2, as the aspect ratio was increased from 0.1 to 0.84.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.