Abstract

Material degradation caused by wet hydrogen sulfide (Wet H2S) is one of the major issues in refineries. Carbon steel is the main construction material used in refineries and is subjected not only to thickness loss but the hydrogen is the major concern. H2S leads to high atomic hydrogen penetration in steel which causes degradation in the form of blistering and/or cracking (HIC/SOHIC) and stress cracking in the area of welds and heat affected zones. Mechanism is unusually dangerous due to high difficulty of threat assessment, which is mostly based on ultrasonic measurements or calculations based on the API standards. This research is based on evaluation of the real threat of wet H2S degradation based on examination of construction materials after 41 years of exploitation in refinery. The comparison of the theoretical calculation based on API standards and experience of the degradation of the real objects was characterized. Laboratory measurements include mechanical tests involving the elongation in the function of tensile stress and deformation, with analysis of material hardness and gas chromatography analysis. The results are complemented by studies of the chemical composition of the streams and analytical studies of the hydrogen content in the material obtained by the gas chromatography method. The tests showed compliance of the standard analysis of the corrosion risk with the laboratory tests performed on the real samples. Research leads to indication of the destructive methods which can be used on the materials obtained during scheduled material replacements or installation modernizations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call