Abstract
Steel slag is a solid waste generated from the steelmaking process. With a very low utilization rate of 30% in China, a high discharging cost of steel slag is inevitable so that it is imperative to dispose of steel slag by new technology. In this study, steel slag was refined by wet-grinding technology to apply on cement. The results showed that the initial setting time and final setting time were prolonged by the increased dosage of 3 μm steel slag. Although the viscosity of wet-grinding steel slag – cement specimens increased significantly, the shear-thinning phenomenon happened by mechanical mixing. The wet-grinding specimens presented a higher hydration heat than that of raw steel slag specimens, and the microstructure of 3 μm-40% (3 μm steel slag mixed with cement as a dosage of 40%) is much denser and show more hydration products than that of raw-40% (raw steel slag mixed with cement as a dosage of 40%) which results in an enhanced compressive strength that could be guaranteed by the dosage of 20% (3 d), 30% (28 d) and 40% (60 d) under the condition of 3 μm steel slag incorporation with lower autogenous shrinkage. Hemicarboaluminate peak was found in wet-grinding specimens that show a higher calcium sulphoaluminate to calcium. The wet-grinding steel slag CO2 emission and cost showed a downward trend compared with cement.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.