Abstract

This paper presents the influence of welding current, electrode-workpiece distance, electrode composition, electrode diameter, electrode tip angle, shielding gas composition, and pulsed current frequency over the arc stagnation pressure of gas tungsten arc welding (GTAW). In this study, arc application tests were carried out over a 1-mm diameter hole on a non-melting water-cooled copper plate. The hole was connected to a differential pressure sensor through an extension tube. As a result, the welding arc pressure was observed to be directly proportional to the square of the welding current and to the tungsten electrode diameter. Moreover, the pressure increases as the electrode-workpiece distance is reduced, and it is inversely proportional to the electrode tip angle, for angles greater than 45°. Also, the electrode composition, the pulsed current frequency, and the gas composition influence the welding arc stagnation pressure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call