Abstract
The 4mm thick 6061-T6 aluminum alloy was self-reacting friction stir welded at a constant tool rotation speed of 600r/min. The specially designed self-reacting tool was characterized by the two different shoulder diameters. The effect of welding speed on microstructure and mechanical properties of the joints was investigated. As the welding speed increased from 50 to 200mm/min, the grain size of the stir nugget zone increased, but the grain size of the heat affected zone was almost not changed. So-called band patterns from the advancing side to the weld center were detected in the stir nugget zone. The strengthening meta-stable precipitates were all diminished in the stir nugget zone and the thermal mechanically affected zone of the joints. However, considerable amount of β′ phases, tending to reduce with increasing welding speed, were retained in the heat affected zone. The results of transverse tensile test indicated that the elongation and tensile strength of joints increased with increasing welding speed. The defect-free joints were obtained at lower welding speeds and the tensile fracture was located at the heat affected zone adjacent to the thermal mechanically affected zone on the advancing side.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.