Abstract

The desire to model a control system so as to optimize the welding process parameters and the effect of the environment during underwater wet welding makes it necessary to study the effects of these parameters as it affects the weld bead geometry of welds achieved in underwater welding. The objective of this paper is to analyze how welding arc current, voltage, speed, and the effect of the water environment affect the weld bead geometry such as bead width, penetration, and reinforcement height. Comparing the differences of the effects of welding input parameters for air and wet welding as it affects the welding output quality parameter is the method employed in this research paper. The result of this study will give a better understanding of applying control mechanism in predicting the quality of a weld during underwater welding. A clearer insight of the weldability of structural steels for offshore applications as it relates to underwater welding, having a full knowledge of the nonlinear multivariable parameters is indicative of better control methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.