Abstract

The coarse-grained heat-affected zones (CGHAZs) of X100Q steel were reproduced via simulating their welding thermal cycles with the varying heat input (Ej) from 10 to 55 kJ/cm in Gleeble3500 system. The microstructures were characterized, and the impact toughness was estimated from each simulated sample. The results indicate that the microstructure in each simulated CGHAZ was primarily constituted of lath-like bainite. With the decreased heat input and accordingly the lowered Ar3 (the onset temperature for this transition), the prior austenite grain and the bainitic packet/block/lath substructure were refined remarkably, and the impact toughness was enhanced due to the microstructure refinement. The bainitic packet was the microstructural unit most effectively controlling the impact properties in CGHAZ of X100Q steel, due to their close correlation with the 50% fracture appearance transition temperatures, their size equivalent to the cleavage facet and their boundaries impeding the crack propagation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.