Abstract

Austenitic stainless steel (ASS) welding consumables are being used for welding armour grade Q&T steels, as they have higher solubility for hydrogen in the austenitic phase, to avoid hydrogen induced cracking (HIC). Even with austenitic stainless steel consumables under high dilution, the risk of HIC prevailed. In recent years, the developments of low hydrogen ferritic steel (LHF) consumables that contain no hygroscopic compounds are utilised for welding Q&T steels. The use of ASS fillers for welding armour grade Q&T steels creates a duplex microstructure (austenite and δ ferrite) in the welds, which drastically reduces the joint efficiency (ratio of ultimate tensile strength of the joint and the base metal). On the other hand, the weld made using LHF fillers exhibited superior joint efficiency due to the preferential ferrite microstructure in the welds. The use of ASS and LHF consumables for armour grade Q&T steels will lead to formation of distinct microstructures in their respective welds. This microstructural heterogeneity will have a drastic influence on the dynamic fracture toughness of the armour grade Q&T steel welds. Hence, in this investigation an attempt has been made to study the influence on the welding consumables and processes on the dynamic fracture toughness properties of armour grade Q&T steel joints. Shielded metal arc welding (SMAW) and flux cored arc welding (FCAW) processes were used for fabrication of the joints using ASS and LHF welding consumables. The joints fabricated by SMAW process using ASS consumables exhibited superior dynamic fracture toughness values compared to all other joints.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.