Abstract
Submerged arc welding of SA 516 grade 60 pressure vessel grade steel was conducted with different heat plate thicknesses and the influence of cooling rate on microstructure, Vickers hardness, and impact toughness of heat affected zone (HAZ) of weldment was systematically investigated. Weld cooling rates vary with change in heat input or variation in plate thickness of base metal. Results showed that thin plates accumulate the heat, which cause grain coarsening and loss of acicular ferrite (AF) microstructure, which is further responsible for lower impact strength of welded joint. It is deemed that faster cooling rates due to heat sink in thickness direction with thick plates cause high percentage of AF with finer grain and enhanced hardness values. Improved impact strength with thick plates with same heat input signifies that supplying heat more than required to thin plates may cause microstructural deterioration and responsible for impact strength loss of weldments. Test demonstrates that the cooling rate should be above 15 °C/s to keep impact strength loss within considerable limits.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.