Abstract
This paper focuses particularly on the influence of wedge duration on spiral wave formation and the regulation of electromagnetic noise. The motion stability or periodicity of a constructed regular neuronal network system is revealed by applying the master stability function method. The effect of wedge duration and electromagnetic noise on spiral wave dynamics is quantified using defined metrics, and explained by bifurcation of neuronal activity and differentiation of neuronal populations. Research results are as follows: (1) The appearing wave head rotates and evolves into a spiral pattern due to the potential difference between neurons, which is determined by wedge duration. (2) Whether it is homogeneous or heterogeneous, electromagnetic noise can effectively regulate the evolution of spiral waves. (3) Noise excitation significantly suppresses the network firing activity and alters the electric field distribution, leading to the narrowing of spiral arm and the drift of wave head. This study not only demonstrates the importance of wedge duration for spiral wave formation, but also provides guidance for stochastically regulating the spiral wave evolution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Communications in Nonlinear Science and Numerical Simulation
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.