Abstract

Cutting processes using blades have found applications in many industries; for example, in garments, fiber–polymer composites, and high-performance fabric forming. In recent decades, the process of cutting the material using a robotic-controlled blade has raised concern about the value of the pressure and the cut force required for a certain type of woven fabric and the estimation of its value before the pressing and cutting process. A simple theoretical relation was established based on the fabric structure and yarn shear stress. The model formulation and experimental results to describe the basic theory of blade cutting fracture for woven fabric of different designs was derived. In this work, the experimental investigation of the effect of the fabric specifications, normal load, and the cutting speed on the cutting force was carried out, which indicates that the value of the specific cutting resistance of the fabric was found to be highly correlated with the fabric structure, warp and weft yarn count, Young’s modulus of the fabric, and fractional cover factors ratio ζ.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call