Abstract

A weakly ionised plasma can be generated in stainless steel welding with a 10 kW fibre laser beam at the ultra high power density of ∼1 MW mm–2 in Ar shielding gas. The objectives of this study are to obtain a fundamental knowledge of optical interaction between a fibre laser beam and the weakly ionised plasma, and to evaluate effects of the plasma on weld penetration. The optical interaction was investigated by the high speed video observation or the power meter measurement of another probe fibre laser beam, which passed horizontally through the weakly ionised plasma induced during bead on plate welding of a 20 mm thick type 304 plate with a 10 kW fibre laser beam of 0˙9 MW mm–2 in power density. The probe laser observed was refracted at 0˙6 mrad angle in average, which was much lower than the 90 mrad divergence of the focused fibre laser beam. The attenuation of the probe laser was measured to be ∼4%, which was not mainly caused by Inverse Bremsstrahlung but by Rayleigh scattering. Moreover, a stable laser welding process could be produced at such ultra high power density that 11˙5 mm deep penetration was obtained even if the laser peak power was modulated 1 ms periodically from 10 to 8˙5 kW. It was consequently considered that the optical interaction between the 10 kW fibre laser beam and the weakly ionised plasma was too small to exert the reduction in weld penetration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.