Abstract

The microbial electrolysis cell coupled with the biotrickling filters (MEC-BTF) was developed for enhancing the biodegradation of gaseous m-dichlorobenzene (m-DCB) through weak electrical stimulation. The maximum removal efficiency and elimination capacity in MEC-BTF were 1.48 and 1.65 times higher than those in open-circuit BTF (OC-BTF), respectively. Weak electrical stimulation had a positive impact on the characteristics of the biofilm. Additionally, microbial community analysis revealed that weak electrical stimulation increased the abundance of key functional genera (e.g., Rhodanobacter and Bacillus) and genes (e.g., catA/E and E1.3.1.32), thereby accelerating reductive dechlorination and ring-opening of m-DCB. Macrogenomic sequencing further revealed that electron transfer pathway in MEC-BTF might be mediated through extracellular electroactive mediators and cytochromes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call