Abstract

This study evaluates the effect of water–cement ratio on linear shrinkage strain, cohesion, friction angle and unconfined compressive strength of expansive black clay of Gombe state in Nigeria. The soil was remolded with predetermined amount of water and then mixed with cement slurry which was design so as to obtain cement contents of 4, 8 and 12%. The remolding water content (w) and the water content of the cement slurry was design so as to obtain a clay–water–cement mixture with water content equal to the optimum mixing clay–water content. The specimen for linear shrinkage strain, cohesion, friction angle and unconfined compressive strength were then prepared and cured for 7, 14 and 28 days before the various tests were conducted. The results obtained show that LSS increased with W/C ratio and decreased with curing periods. Cohesion increased with W/C ratio and decreased with curing periods and cement content while the soil friction angle decreased with W/C ratio and increased with curing period and cement content. UCS decreased with increase in W/C ratio for all cement content and increased with curing period and cement contents. Statistical analysis using ANOVA was carried out to evaluate the relative effect of W/C ratio, cement content and curing period on LSS, C, θ, and UCS. The results shows that the effect of both W/C ratio, cement content and curing period are statistically significant at 5% level with values of F calculated all greater than F critical for all the properties investigated. However from the calculated F values, the effect of W/C ratio was found to be more statistically significant than the effect of curing periods and cement content while the effect of curing period was found to be more statistically significant than the effect of cement content on LSS, C, θ, and UCS respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call