Abstract

The oxidation behaviour of pure Cr at 1000 and 1050°C was studied in Ar–O2 and Ar–H2–H2O mixtures. It was found that in the low-pO2 gases the oxide scales exhibited higher growth rates than in the high-pO2 gases. The scales formed in the low-pO2 gases showed substantially better adherence during cooling, than scales formed in the high-pO2 gases. These differences in growth rate and adherence can be correlated with differences in size and location of the in-scale voids formed during the isothermal exposure. Exposures in Ar-O2-H2O mixtures revealed that the differences in scale growth rates as well as in scale void formation and growth are not primarily related to differences in the oxygen partial pressure of the atmosphere but to the presence of water vapour in the test gas. At sufficiently high H2O/O2-ratios, water vapour promotes oxide formation at the scale/metal interface thereby suppressing excessive growth of existing voids, and also as a consequence improved scale adherence. Whether the enhancement of inward scale growth is related to transport of H2O- or H2-molecules or due to OH− ions, cannot be derived with certainty from the present results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.