Abstract

Sporisorium reilianum f.sp. zeae, the causal agent of head smut, infects the roots of the maize plantlets. Little information is available concerning the development of the fungus in soil, although this saprophytic phase is an important part of the life cycle. This paper reports that water potential also affects hyphal induction, and this effect on the fungus may influence disease transmission. In response to a decrease in water potential from 0 to −1.52 MPa in presence of variable molecular weight polyethylene glycols, haploid hyphae develop from the haploid yeast. Hyphal extension is fastest at low water potentials (−1.2 MPa) controlled with high molecular weight polyethylene glycols, PEG-3350 and PEG-8000. Formation of parasitic dikaryotic hyphae following fusion between haploid hyphae was possible at low water potential (−1.2 MPa) and was not inhibited by water stress. These results are consistent with the hypothesis that the effects of low soil water potential on yeast–hyphal transition and hyphal growth facilitate the convergence of compatible haploid strains, and that this may increase disease severity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call