Abstract

[1] The electrical conductivity of lower crustal clinopyroxene was measured at 6–12 kbar, 250–1000°C, and Ni-NiO buffer conditions. The dependence of electrical conductivity on water content was studied using both natural and preannealed samples separated from a fresh xenolith granulite, with water contents from 0 to 375 ppm. An end-loaded piston cylinder apparatus and a Solarton-1260 Impedance/Gain Phase Analyzer were used in the study over a frequency range of 0.01–106 Hz to obtain the complex impedance spectra. The results show that the influence of pressure is very weak relative to temperature and water content and that two distinct mechanisms with different activation enthalpies dominate electrical conduction under dry and wet conditions. For the dry sample, the activation enthalpy is ∼102 kJ/mol and the main charge carriers are small polarons, i.e., hopping of electron holes between ferrous and ferric irons. For wet samples, the electrical conductivity is significantly enhanced with an activation enthalpy of ∼70 kJ/mol and the charge carriers are likely to be protons. Under hydrous conditions, the activation enthalpies are nearly independent of water content and the conductivity is a function of water content with an exponent of ∼1. As a major constituent of granulites with >60% modal volume in some regions, clinopyroxene containing minor amounts of water may contribute significantly to the high electrical conductivity in the lower crust, especially under stable continental regions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.