Abstract
SUMMARYCurrent agricultural practices rely on crops with developmental phenologies adapted to local climate, photoperiods and soils; however, global climate change will alter some abiotic factors (e.g. temperature and precipitation). Previously adapted varieties may be poorly prepared for these changing conditions, if such conditions induce mismatched phenologies. Crops that depend on cross-pollination and synchronous flowering may be most susceptible, e.g. monoecious plants have separate male and female flowers, and changes in flowering synchrony may alter yield. Using genetically diverse (open-pollinated (OP)) and genetically homogeneous (hybrid) varieties of a monoecious crop, courgette, also known as zuchinni (Cucurbita pepo), phenological responses to experimentally manipulated moisture conditions were explored in an agricultural context. Under drier and wetter conditions, the hybrid courgette plants shifted towards a male-biased floral sex ratio due to the reduced production of female flowers. However, flowering synchrony and fruit production were unaffected by moisture treatment in both varieties. The hybrid and OP varieties differed in many traits related to floral sex ratios, phenology, synchrony and fruit production. Further, the OP variety displayed more phenotypic variation than the hybrid in many traits. Being in a population context rather than relying on self-pollination increased the availability of potential mates for a given female flower in both the hybrid and, particularly, the OP variety. Thus, the increased genetic diversity found in OP v. hybrid varieties may buffer the possible environmental effects on flowering synchrony within a cropping context. Finally, the likelihood of female flowers setting fruit increased with the number of male flowers within a population, and the rate of increase was higher in the hybrid variety. In summary, climate change is predicted to reduce investment in female function in some monoecious crops and genetically diverse varieties may play an important role in maintaining reproductive synchrony in altered environments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.